Assignment: A5
Air-Track: Cursor Tethers
New physics calculation concepts:
e Springand drag type forces applied to aselected car.
Python language topics:

e Adictionary.
e Adictionaryof dictionaries.
e Concatenatingstrings.

Problem statement:
(Again, start with a new Pythonfile.)

Addalgorithmiccontenttothe previous exercise to enable cursor-tetherclientinteractions with the car objects.

Algorithmicdescription:

Create a Clientclass. (This class will eventually be used for multi-client games.) Use the client object to store mouse data
(as Clientattributes) asitis extracted fromthe Pygame event queue. In the Client methods that follow, determine the
mouse state by referringtothe Clientattributes.

Adda “calc_tether_forces_on_cars” methodtothe Client class that does the following:

o Ifa carisnotalreadyselected, checktoseeifacar is underthe cursor andthenselectit;if the car is selected but
the mouse buttonisup, un-selectit.

e |fthe caris selected andthe mouse buttonis down, calculate the forces on the car, based on which of the three
buttonsis depressed, and the physics-world separation between the cursorand the car inthe x-direction.

Adda second methodtothe Client class thatdraws the cursor tether(aline).

In the while loop, use the “calc_tether_forces_on_cars” methodto calculate the forces applied by each clienton the
cars. (Thereisonlyone clientatthis point.) Do this BEFORE you update the velocity and position of the cars.

AFTER you draw the cars, draw the cursor tetherforeach clientthat has selected acar.

Python code: (seeimageson nextfew pages)

The following code (image) is notacomplete solution to the problem. It shows changes (additional content) relative to
assignment#4. Thereisno obfuscation thistime, butyou have to figure out where these pieces of code should go. The
indentlevels should be aclue to you. These are not necessarily in order, so of course the neighboringimages are not
necessarily acontinuation from the image above.

class Client:

def init_ (2elf, cursor3tring color):
self.cursor location px = (0,0) # x px, ¥ px
self.mouse button = 1 $#1, 2, or 3

self.buttonIsS5tillDown = False

self.cursorString color = cursor3tring color

self.zelected car = None

Define the nature of the cursor strings, one for each mouse button.
ngl':{'c drag': 2.0, 'k Hpm': 60.0}%,

g2':{'c_drag': 0.2, 'k Npm': 2.0},
'string3®:{'c drag': 20.0, 'k Npm': 1000.0}}

self.mouse strings = {'s

[

3%

def calc_tether forces_on_cars(self):
Calculated the string forces on the selected car and add to the aggregate
that is stored in the car object.

Only check for a selected car if one isn't already selected. This keeps
the car from unselecting if cursor is dragged off the car!
if (self.selected car = None):
if self.buttonIsStillDown:
self.zelected car = air track.checkForCarAtThizPosition(zelf.cursor_ location px)

$# If a car is selected
else:
if not self.buttonIsStillDown:
Unselect the car and bomb out of here.
self.zelected car.selected = False
self.selected_car = Hone
retuorn Hone

If button is down, calculate the forces on the car.
else:
Use dx difference to calculate the hooks law force being applied by the tether line.
$# If you release the mouse button after a drag it will fling the car.
$# Thi=s tether force will diminish as the car gets closer to the mouse point.
dx m = env.m from px(self.cursor_ location px[0]) - self.selected car.center m

stringlame = "string"” + str(zelf.mouse button)
self.selected car.cursorString spring force N += dx m * self.mouse strings[sctringName]['k Npm®]
self.selected car.curscr3tring carDrag force N += (self.selected car.v mps ¥

{-1) * =melf.mouse strings[stringName] ["c drag'])

def draw cursor string(self):
car center xy px = (env.px from m({self.selected car.center m), self.selected car.center y px)
pygame.draw.line (game window.surface, self.cursorString color, car_ center xy px, self.cursor location px, 1)

def checkForCarAtThisPosition(self, cursor location xy):
=% px = cursor location xy[0O]
¥_px = cursor location xy[1l]
® m = env.m from px(x px)
for car in self.cars:
if ({({x m > car.center m - car.halfwidch m) and (x m < car.center m + car.halfwidth m)) and
{(v_px > game window.height px - car.height px)):
car.selected = True
return car
return None

Use v midpoint for drawing the cursor line.

self.center y px = int(round({ float(game window.height px - =elf.height px) + flaat{self.height_px)/2.D})
For use with cursor-tethers selection.

self.selected = False

Reset the aggregate forces.
car.cursorString spring force N = 0O
car.cursorString carDrag force N = 0

$# Calculate client related forces.
for client name in env.clients:
env.clients[client name].calc tether forces_on_cars ()

Add a local (non-network) client teo the client dictionary.
self.clients = {'local':Client (THECOLORS["green"])}

elif (event.type — pygame.MOUSEBUTTCHNDOWN) :
self.clients['loczl'] .buttonIsStillDown = True

(buttonl, buttonZ, button3) = pygame.mouse.get pressed()
if buttonl:
gself.clients["loczal’] .mouse button = 1
elif button:
gself.clients["local’] .mouse button = 2
elif button3:
self.clients["local’] .mouse_button = 3
else:
self.clients["local’] .mouse_button = O

elif ewvent.type — pygame .MOUSEBUITCONUP :

self.clients['local'] .buttonIsS5tillDown = False

self.clients['local’] .mouse_button = 0O

if self.clients['"local'].buttonIsStillDown:
$# If it down, get the cursor position.
self.client=s["local'] .cursor location px = (mouseX, mouseY) = pygame.mouse.get _pos()

Add up 2ll the forces on the car.
car forces N = (car.m kg * =self.g mps2) + (car.cursorString spring force N +
car.cursorString carDrag force N)

Draw cursor strings.
for client_name in env.clients:
if (env.clients[client name].selected car != None):
env.clients[client_name].draw_cursor string()

Aggregate type forces acting on car.
self.cursorString spring force N = 0
self.cursorString carDrag force N = 0O

