Assignment: A6
Air-track: GUI controls
New physics calculation concepts:

e Changingthe gravitational force during runtime.

Python language topics:

e Use of the GUI features of the pgu module.
Problem statement:
(Again, startfrom a copy of your previous assignmentfile.)

Review the code forthe “guil0.py” example in the pgu module’s example folder. By imitating this example, add a GUI
interface forthe A5 assignment. The GUl interface should include aslider control for gravity and checkboxes for color
transferand collision stickiness. Then also add a button control forthe motion freeze. Almost all of the pgu examples
have sample code for buttons. Use “F2” key to toggle the GUI on and off.

Note: The GUI controls should notinterfere with the cars. So when you interact with a control this should not
inadvertently triggera car selection. This distinction is enforced in the checkForCarAtThisPosition function that was
definedin previous assignments.

Algorithmicdescription:

e Organize GUI controlsina class.

e Instantiate controls and supporting GUl objects.

e Feedthe GUI eventsfrom Pygame while inthe game loop.

e Readthe state of the GUI controls and update corresponding object attributes. Do this afterall userinput
has been collected and beforethe physic calculations change the velocity and position of the cars.

e Paintthe GUI on the screen.

Python code: (seeimageson nextfew pages)

The following code is nota complete solution to the problem. It shows changes (additional content) relative to
assignment #5. There is no obfuscation, butyou have to figure out where these pieces of code should go. The indent
levelsshould be aclue to you. These are in order, but of course the neighboringimages are not necessarily a
continuationfromthe image above.

$# gui from Phil's PyGame Utilities
from pgu import gui

clazs TrackGuniControl=(gui.Table):
def init {self, **params):

gui.Table. init (self, **params)
text color = THECOLORS["vyellow"] #(0, 0, 255)

$# Make a table row in the gui (like a row in HTIML).
gelf.tr()

Color transfer.
self.td(gui.Label (" Color Transfer (c): ", color=text color), align=1)

gelf.td(gui.S5witch({value=False, name='colorTransfer')})

$ Stickiness.

zelf.td(gui.Label (" Fix stickiness (s): ", color=text color), align=1)
self.td(gui.Switch(value=True, name='fix Stickinesz'}}

$# Gravity.

zelf.td(gui.Label (" Gravity (g): ", color=text color)}

¢ Freeze the cars.

zelf.td(gui.Label (" Freeze (f): ", color=text color})

$# Form element (freeze button).

freeze button = gui.Button("v=0"}

$# Note: must invoke the method to be called WITHOUT parentheses.
freeze button.connect(gui.CLICK, self.stop cars)

self.td(freeze button)

$# Just a help tip for starting a new demo.

zelf.td(gui.Label (" New demo (1-3).", color=THECOLORS["green"]1))

$# The method that's called by the button must be defined here in this class.
def stop cars(self):
alr track.stop the cars()

Set air track attributes based on the values returned from the gui.
def gqueryIt {self):

$# Color transfer.

air track.color transfer = gui form['colorTransfer'].value

Stickiness

air track.fix wall stickiness = gui form['fix Stickineszs'].wvalue
alr track.fix car stickiness = air track.fix wall stickiness
Gravity

self.td(gui.HS5lider(0,-3,3, =size=20, width=100, height=16, name='gravity factor'}}

air track.g mps2 = air track.gbase mps2 * (gui_furm['gra?;:j_fac::r'].valuefE.D)

clas=s AlrTrack:
def init (self):
self.clean()
self.gui menu = True
def clean{self):
Initialize the list of cars.
self.cars = []

self.carCount = 0

Coefficients of restitution.
self.coef rest base = 0.95
gelf.coef rest car = self.coef rest base
self.coef rest wall = self.coef rest base

Component of gravity along the length of the track.
gelf.g toggle = False

self.gbase mps2 = 9.8/40.0 # one 40th of g.
self.

color transfer = False

self.collision count = 0

self.
=elf.

fix wall stickiness = True
fix car stickiness = True

def stop the cars(self):
for car in self.cars:

car.v _mps = 0

def make some cars(self, nmode):

Useful for reseting things.

$# Update the caption at the top of the pygame window frame.

game window.update caption("Rir Track (basic):

Demo #"
$# Scrub off the old cars and reset some stuff.

air track.clean(})

0.0
False

r factor']..value =

nzfer'].value =

_______ 2

gelf.cars.append{ Detroit(color=THECOLORS["vel
self.cars.append({ Detroit (color=THECCLORS["ora

= 2.0
False

gui form['colorTransfer'].value =

elif (nmode

gui_ form['g

+ str({nmode))

left px =
left px =

left px =
left px =

left px =
left px =

240,
340,

240,
440,

440,
540,

width px=20, v _mps= 0.
width px=30, v _mps= 0.

width px=20, v mps= -0.
width px=60, v _mps= -0.

width px=20, v mps= -0.
width px=80, v _mps= -0.

0))
0))

1))
23)

1))
2y)

