Assignment: A8
Multiplayer Demo

Thisassignmentintroduces network play and multiplayerfunctionality: a game serverand clients. Itillustrates single-
room multiplayer network game play. The serverdisplays the game on a single (projection) screen which must be visible
by all the players. The serverlistens to the state of mouse and keyboards on each client. These client-state
communications are primarily one-way in thatthe game state is not broadcast out to the client. Each clientcomputer
has a blank Pygame window (and supporting game loop) that detect mouse and keyboard events. Clients are typically on
laptops.

This one-way approach offers arelatively simple implementation without significant latency problems. True two-way
game play usually involves game-state broadcasting, multiple-engine synchronization, and/oracombination of both.
Preliminary testing of PodSixNetindicated that state broadcasting would resultinrendering delays if there werealarge
numberof game objects (like streams of bullets; and who doesn’t want streams of bullets?). And since this wasto be
appliedin classroom/lab situation, this one-way approach seemed a practical compromise.

Python language topics:

e Anotherapplication of dictionaries
e Asynchronoussocketserviceclients and servers (Wow. That sounds complicated, but we’lluse PodSixNet
which does all the heavy lifting for us.)

Problem statement:

(This assignmentstilluses Pygame and its event handling, but that’s aboutit. So, we won’t be building onto the previous
assignmenthere.)

e Reviewtheintroductory help page for PodSixNet.
http://mccormick.cx/projects/PodSixNet/

e Studythe “Whiteboard” example (thethree files) in the PodSixNet examples folder.

e To getthe “Whiteboard” examplerunningyou will likely have to open aport inyour Windows firewall. Then
start the serverand each client from a separate command window. Specify the host machines IP address (if
localhostdoesn’t work) and port numberas shown in this example:

WhiteboardServer.pylocalhost:3333 or WhiteboardServer.py ???.?7?.??.?7?:3333
WhiteboardClient.pylocalhost:3333 or WhiteboardClient.py ??7?.???.??.77:3333

Note that if you have a general application-based firewall rule setup for Python (or Pygame), this may conflict
with any attemptto make a specificportrule. These general rules sometimes get setup if Python attempts to
connectto theinternetforsomereason, andif you blockeditwhenittriedto connect, this will cause a problem
here.Soif you are havingtrouble connecting, firstlook foran application based rule; delete it; thensetupa
firewall rule foraspecificport. This should be an “inbound” rule in the Windows 7 firewall and an “exception”in
the XP firewall. Port 3333 is used in the example above.

In this Whiteboard example the serveris broadcasting state data out to the clients. The serverdoes notrender;
all the clientsrender. Thisis a two-way example, where each client sends drawing-related updates to the server



and thenthe serverbroadcasts the overall whiteboard state out to all the clients. Each clientrenders based on
whatit hears from the server.

e (Create asimilardrawing demo;look atthe video associated with this PDF. Make this demo distinct from the
Whiteboard example inthat only the serverrenders and the server does NOT broadcast state data out to the
clients. Clients send keyboard and mouse state datato the server; basically one-way data flow.

o Clients:
= Sendstateinfoto the server100 times persecond
e mousexandy pixellocation
e up/down state of the left mouse button
e up/downstate of keysa,s, d, and w.
o Server:
= Make a FIFOliststructure in the serverto keep track of the user’s mouse locations.
e Whentheuser'sleftmouse buttonisdown, add the incoming mouse position to the
FIFO. Keepthe length of the FIFO at 200; use the “pop” method to delete the oldest
records from the list.
e Make alistofthese FIFOliststo keep all the clientdatain one place.
= Draw the FIFOlistas circlesone time pergame loop. Have a different colorforeach client.
= Draw theclientkeyboard state astext U or D (up/down) foreach of the four keys.
= Keeptrack of the activity of each client; if they stop talking, stop renderingthem.

Algorithmicdescription:

Many of the ideas forthisdemoare inthe problem statement above, but here are some guidelines for coding the
client/serverfunctionality.

The data flow, fordrawing on the server, is fromclient to the server. Butthere isalso an initial connection fromthe
clientthattriggersa server “send” to the client; this contains an ID numberthatallows the clientto name itself. This ID
isalso usedto establishacolorfor each clientasitconnectsto the server.

e Theinitial connection (clienttoservertoclient)

o Theserverwill need a“GameServer” class thatinherits from the parent class “server.” Here the
“Connected” function will runwheneveraclientconnects. “Connected” executes the “send” method of
the “channel” object. Thissendsa dictionary that containsthe clientID that will be used to establish the
clientcolor.

o Clientwill need aNetworkListener class thatinherits from the parentclass “ConnectionListener.” On
instantiation,itconnectstothe server. Itshould have a Network_hello function that runs one time when
the connectionisestablished; here the clientIDisreceived and the client coloris established.

e Main data flow (clienttoserver)

o Client: The datadictionary thatis sentbythe clientshould be updated based onthe mouse and
keyboard states gleaned from the Pygame event queue. In the game loop, update the dictionary, and
thensenditwith the “send” method of the “connection” object.

= Thedictionary needstohave an “action” key that identifies the name of the receiving function
for the server. Forexample, | used the value of “CN” to indicate the receiving function will be
“Network_CN.”

= Thedictionaryalsoneedstohave an identifying key that associates it with the sendingclient.



o Server:Theserverreceivesthe client’sdictionaryinthe Network CN function. This function stashes this
incomingdataintoa serverobjectand updatesthe FIFO data that represents the client cursor history.
This function also keeps track of the activity of each client (counting the sends); rendering can be
inhibited from those clients that have stopped sending data.

e Hidinginactive clients: clients can be flagged as inactive if their send count hasn’t changed. Then based on this
flag, the servercan stop renderinginactive client’s. The server object that stores the client data has a method
called “checkForQuietClients” that checks for client activity. This can be called every few tenths of asecondin
the game loop to check for quiet clients. Quietness can be caused by shuttingdown the clientwindow (and also
by simply mouse-dragging the client window).

Note that the approach described here foridentifyinginactive clientsis usedin all of the final assignments but
not some of those between thisone and those. There isan earlierapproach to this that didn’t get edited out of
some of the intermediate assignments (TBD).

Also note the Whiteboard example uses avery different approach for keeping track of disconnected clients. This
involves WeakKeyDictionary objects and appears like it might be a bit abstract for beginning programmers. The
countingapproach described above seems more straightforward.

Python code: (see source code line onweb page...)

If you can, try to work through this problem withoutlooking at the source code. If that works (you learn); great. But
peekingisencouraged here. First, start with the help page (see link above). Then, get the Whiteboard demo running.
However, there’salot goingonthere that we don’t need. So focus on this PDF before spending too much time to
completely understand the code inthe Whiteboard example.

Obfuscated code orincremental code didn’t seem useful forthis assignment, so noscreen shots here.



