
Assignment: A15c (back to main page)

Air-Table: Perfect Kiss

The term kiss is taken from the game of billiards (sorry, not very romantic). In the collision calculations

that follow this term will refer to the state where two pucks are in contact but not overlapping (no

penetration).

As discussed briefly in the 2D-Physics Engine Framework assignment, there are limitations to

establishing the contact normal if based simply on the positions of the overlapping pucks. This

overlapped state is when the collision is detected, and it is most straightforward to determine the

normal by taking the difference between the position vectors of the two overlapping pucks. This

approximate-contact normal is shown as the dotted line in the image below (blue puck approaching a

stationary red puck). The best representation of the contact normal is found by reversing the puck

positions to the kiss point. The resulting ideal-contact normal is shown with a solid line.

The method for calculating the ideal-contact normal starts with determining the travel-time between

the collision detection event and the kiss point. With this travel-time known, the pucks can be reversed

to the kiss point using their incoming velocities.

https://pet.timetocode.org/index.html?perfect-kiss

Problem statement:

Add content to the previous exercise to support the perfect-kiss algorithm. Use the 1, 2, and 3 keys on

the number pad to launch demos that illustrate a collision with a stationary puck: (1) raw collisions (no

overlap correction), (2) overlap correction using the approximate-contact normal, and (3) overlap

correction using the idea-contact normal. Simulate with a fixed time-step corresponding to a frame rate

of 20 (this fixed time-step will insure evenly spaced pucks result from the persisting drawing). Let all the

puck drawing persist (inhibit screen erasing). Use Python’s time.sleep method to pace the game loop to

correspond with the fixed time-step. Use Python’s random.random method to add variability to the

starting position of the moving puck.

Algorithmic description:

The following outline shows the steps to correct for overlap using the ideal-contact normal.

1. The first drawing shows the two pucks approaching from the
1A and

1B positions. The detected

collision is shown at the
2A and

2B positions. This progression from approach to collision can

be observed from the perspective (reference frame) of the B puck. This is done by adding

Bv t  to the translation vector for both pucks. This effectively makes B stationary and puts

the second position of the Apuck at
2A . From this perspective, the A puck moves along the

A path. This simplifies the problem in that only the motion of A needs to be analyzed to

determine the kiss point (when A is at
2KA).

2. Next, determine the legs of the large triangle and the small triangle (inside it) in the image

below. This will give the distance that A travels along the A path between the kiss point and

the collision detection point. From this distance the travel time can be calculated using the A

translation vector (
A Bv t v t  ).

a. Do this by first projecting the 1 1B A vector onto the A path. Use the projection

method in the vector class.

b. Subtract the projection vector from the original 1 1B A vector. This difference

represents the shortest distance between
1B and the A path.

c. The scalar length of the hypotenuse of the small triangle, by kiss-point definition, must

be the sum of the two pucks’ radii.

d. The scalar length of the top leg of the small triangle can be determined using the

Pythagorean theorem.

e. A vector representation of the top leg can be constructed by a product of the unit vector

for the A path and the scalar length of the top segment.

f. Now, the vector from
1A to

2KA can be determined (vector to the kiss position). From

here it is straightforward to calculate the vector between
2KA and

2A .

3. From this
2KA to

2A travel, the corresponding travel time can be calculated using the A

velocity vector (
A Bv v). This can be done with either the x or the y component; just avoid zero

in the denominator. This gives a key result: pt , the time that transpires between the kiss point

and the collision detection (the subscript p refers to penetration).

4. Once pt is determined, we can go back to the absolute reference frame and use the original pre-

collision velocities of the two pucks (Av , Bv). Use these absolute velocities and pt to reverse the

2A and 2B puck positions back to the kiss point.

5. Now, at the kiss point, determine the ideal-contact normal and the post-collision normal

velocities. Add the tangential components to get the total post-collision velocity vectors.

6. Use the post-collision velocities to move the pucks forward to a time pt after the kiss point. This

puts the pucks where they should be had they collided at the surface and not penetrated each

other.

