
Assignment: A15c                  (back to main page) 

Air-Table: Perfect Kiss 

The term kiss is taken from the game of billiards (sorry, not very romantic). In the collision calculations 

that follow this term will refer to the state where two pucks are in contact but not overlapping (no 

penetration). 

As discussed briefly in the 2D-Physics Engine Framework assignment, there are limitations to 

establishing the contact normal if based simply on the positions of the overlapping pucks. This 

overlapped state is when the collision is detected, and it is most straightforward to determine the 

normal by taking the difference between the position vectors of the two overlapping pucks. This 

approximate-contact normal is shown as the dotted line in the image below (blue puck approaching a 

stationary red puck). The best representation of the contact normal is found by reversing the puck 

positions to the kiss point. The resulting ideal-contact normal is shown with a solid line. 

 

The method for calculating the ideal-contact normal starts with determining the travel-time between 

the collision detection event and the kiss point. With this travel-time known, the pucks can be reversed 

to the kiss point using their incoming velocities. 

  

https://pet.timetocode.org/index.html?perfect-kiss


Problem statement: 

Add content to the previous exercise to support the perfect-kiss algorithm. Use the 1, 2, and 3 keys on 

the number pad to launch demos that illustrate a collision with a stationary puck: (1) raw collisions (no 

overlap correction), (2) overlap correction using the approximate-contact normal, and (3) overlap 

correction using the idea-contact normal. Simulate with a fixed time-step corresponding to a frame rate 

of 20 (this fixed time-step will insure evenly spaced pucks result from the persisting drawing). Let all the 

puck drawing persist (inhibit screen erasing). Use Python’s time.sleep method to pace the game loop to 

correspond with the fixed time-step. Use Python’s random.random method to add variability to the 

starting position of the moving puck. 

Algorithmic description: 

The following outline shows the steps to correct for overlap using the ideal-contact normal. 

1. The first drawing shows the two pucks approaching from the 
1A  and 

1B  positions. The detected 

collision is shown at the 
2A  and 

2B  positions. This progression from approach to collision can 

be observed from the perspective (reference frame) of the B  puck. This is done by adding 

Bv t   to the translation vector for both pucks. This effectively makes B  stationary and puts 

the second position of the Apuck at 
2A . From this perspective, the A  puck moves along the 

A  path. This simplifies the problem in that only the motion of A  needs to be analyzed to 

determine the kiss point (when A  is at 
2KA ). 

 



2. Next, determine the legs of the large triangle and the small triangle (inside it) in the image 

below. This will give the distance that A  travels along the A  path between the kiss point and 

the collision detection point. From this distance the travel time can be calculated using the A

translation vector (
A Bv t v t   ). 

a. Do this by first projecting the 1 1B A vector onto the A  path. Use the projection 

method in the vector class. 

b. Subtract the projection vector from the original 1 1B A  vector. This difference 

represents the shortest distance between 
1B  and the A  path. 

 

 

c. The scalar length of the hypotenuse of the small triangle, by kiss-point definition, must 

be the sum of the two pucks’ radii.  

d. The scalar length of the top leg of the small triangle can be determined using the 

Pythagorean theorem. 

e. A vector representation of the top leg can be constructed by a product of the unit vector 

for the A  path and the scalar length of the top segment. 

f. Now, the vector from 
1A  to 

2KA  can be determined (vector to the kiss position). From 

here it is straightforward to calculate the vector between 
2KA  and

2A .  

3. From this 
2KA  to

2A  travel, the corresponding travel time can be calculated using the A

velocity vector (
A Bv v ). This can be done with either the x or the y component; just avoid zero 

in the denominator. This gives a key result: pt , the time that transpires between the kiss point 

and the collision detection (the subscript p refers to penetration). 

4. Once pt is determined, we can go back to the absolute reference frame and use the original pre-

collision velocities of the two pucks ( Av , Bv ). Use these absolute velocities and pt  to reverse the 

2A  and 2B  puck positions back to the kiss point. 

5. Now, at the kiss point, determine the ideal-contact normal and the post-collision normal 

velocities. Add the tangential components to get the total post-collision velocity vectors. 



6. Use the post-collision velocities to move the pucks forward to a time pt after the kiss point. This 

puts the pucks where they should be had they collided at the surface and not penetrated each 

other. 


