Introduction to Game Development with Pygame
(Python 2D Game Prog.)
PHY-109 J-term 2013
Gustavus Adolphus College

Description:

This course is an introduction to computer programming through an application of the Python language.
The elements of the language will be taught as students develop computer games with the Pygame
interface to the Simple Directmedia Layer (SDL) library. Students will develop a simple physics engine
(algorithms that model object motion and interaction) aswellas apply more advanced open-source
engines (Box2d). High school math will be helpful but notrequired. There will be instructive exercises as
well aslonger project work. The course concludesin a competition with teams battling for survival in
multi-player network games created by the students.

Goals:

The primary goal isto introduce students to computer programming by developing games. The intentis
to teach the Python language through an engaging application of the Pygame game-development
environment. There will be emphasis given to Object-Oriented Programming methods (OOP).

A secondary goal isto introduce students to numerical methods for modeling physical systems. Students
will develop theirown simple physics engines. This will involveavery basicintroduction to numerical
solutions of differential equations (Euler method). A student background in high school physics and
calculusis beneficial but definitely not required.

There will be some overview discussion of how the mathematics of advanced physics engines can be
usedin modeling more complexinteractions such as non-spherical rigid-body collisions. Here again,
advanced math will not be required. Thisisintended to sparkinterestin some students forfuture
investigation and study.

This course will fosterteamwork. There will be lab exercises, individual and team-based project work,
and a competition between teams at the end of the course. This will necessitate both individual effort
and cooperative parsing and execution of project tasks.

The course isaimed at those with little or no programingexperienceand isintended to attract students
from all departments at Gustavus. The majority of students may come from science programs, butwe
alsohope to see some history and philosophymajors. Programmingis a useful skill forany academic
focus.

Finally, I'm expecting to see amazement as students watch their programs literally becomelife-like on
the screen. The oh-wows in this course will come fairly early and painlessly, creating appetite for
learning more of the Python language and associated game development methods.



Teaching/Learning Approach:

This course will be completely project driven. Students will incrementally develop the algorithmictools
neededtoassemble a2-D game environment. This overall environment will be instructed through a
series of assignments, each building on the previous, until the students have a collection of tools needed
for the final projectand multiplayer competition in the last week. Each assignment will involve
algorithms and code that affect the visual representation of game objectsasrenderedinthe Pygame
environment. Instruction onthe supporting elements of the Python language will be given as needed.
The visual feedbackin these exercises helps to motivate the students (and the instructor). It’s fun; it can
be addicting.

Daily Pattern:

Each day will start withinstruction on algorithmicconcepts. The ideas will be introduced duringashort
20 to 40 minutes morning lecture/discussion. There will usually be some introductory explanationin
each assignment description in PDF format. Then there will be a code walk-through of how these
algorithms will lookinthe Python language. The Python code will be discussed and explained while
projectedtothe classroomscreen (but the actual code file willnot be distributed at this point).

Needed elements of the Python language will be identified in the morning lecture andinthe assignment
description and then explained in more detail in the afternoon lecture/discussion session, also 20to 40
minutes. The afternoon session will be directed at the students with less coding experience. Associated
and supporting assignments may be given to help students gain experience with the needed language
elements.

The day will end with alab session of 2 to 3 hours. Here the students will work togetherand start writing
the code (asindividuals) forthe assignment. This will be atime to discuss the assignment with other
studentsand also the instructor. Students with Python experience will be encouraged to help those who
are new to the language. We will have alab space, lecture room, and the second floorcommons areato
spread out in. There will be eightlab computers that can be used by students without laptops and for
teamsto test out multiplayerfunctionality in their games.

The instructor will checkindividual progress at least once per week atthe beginning of lab time. Visual
demonstration (doesitwork?) of individual student code will be observed by the instructor. After
progressis noted, releases of code solutions forassignments will be distributed to the class. Solution
code can be used by students to modify their code oras a starting point forthe nextassignment.

Course Outline:

Firstweek: 1D Air Track

Second week: 2D Air Table

Third week: Pybox2d

Forth week: Project, Tournament, and Exam.

AN

Weekly Outline:

1. Firstweek: 1D Air Track
a. Pygame (morningdiscussions)
i. Installation and demonstration of the development environment:



1. Python, Pygame, pybox2d, Notepad++.
ii. Notepad++(the editing/running environment):

1. Basiceditingtips.

2. Startingand debugging programs from Notepad++.
iii. Pygame basics:

1. Importing modulesand initializing pygame.
Game window and surfaces.
Drawingor blittingto a surface.
Rectangles, circles, lines, and polygons.
Flipping (updating) the display.

6. Theeventqueue.
iv. Airtrack assighnment concepts:

vk N

1. The main classes of the air track assignment:
a. Client.
b. AirTrack.
c. Detroit(trackcars).
d. Environment.
e. GuiControls.
Flow of logicinthe game loop.
Time-based physics calculations: the integration.
Cursor strings and the client class.
Mutiple car objects and collision physics.
Collisions and penetration corrections.

ok wWwN

7. Guiinterface and pgu.
b. Python (afternoon discussions)

i. Statements, functions, conditional branching and Boolean logic, loops.
ii. Date types:integerandfloating pointnumbers.
iii. References.

iv. Mutable and immutable objects.
v. Listsand dictionaries.

vi. Namingconventions.

vii. Namespace.

viii. Classes: methods, properties, and instantiation.
ix. Enumerated lists and collision pairs.

x. Debugging.
2. Secondweek: 2D Air Table

a. Pygame
i. Vectormath andthe vectorclass.
ii. The physics World and the Screen and converting back and forth.
iii. 2D collision physics forcircularobjects (pucks).
iv. Springs(and dampers) class, renderingthe stretched spring, and the aggregate
forces on the pucks.
v. Multi-player network features and PodSixNet: server, clients (the game pad), and
supportingclasses.
vi. Vectorrotation.
vii. Multi-playerstuff: cursors, cursor strings, tubes, jets, guns, and bullets.



viii. Zoomingthe view.
b. Python
i. Operatoroverloading with the vectorclass.
ii. Classinheritance.
iii. Objectdeletion.
3. Thirdweek: pybox2d and etc...
a. Introductiontothe Box2D physicsengine.
b. The pybox2dtest-bed and framework overview.
c. Sample code and assignments:
i. Modification of atest-bed example.
ii. Anexample without usingthe test-bed framework.
d. OtherPygame things:the Twixtboard game (no physics please).

4. Forth week: Project, Exam, and the Tournament.

a. The final project and tournament: As a team, develop two or more multi-player games. Use
the client-serverapproach demonstrated in the air-table exercise (i.e., game-pad clients
with all game-objectrendering done atthe server). The games should support either two or
fourclients (players). Base one game on the air-table exercise. Base the othergame on
pybox2d. The only requirementis thatthe game has a clear metricfor determiningawin
and that wins be establishin fiveto ten minutes (orless). An acceptable alternative forone
of the gamesisto developitwithout usingaphysics engine. Forexample: adapt the Twixt
board game for multiplayer network use.

We'll discuss the nature of the tournamentand decide how we wantto do this as a class.
The initial thoughtonthisisto have it be double elimination with brackets created viaan
online generator. Each round will have a pair of teams competingin multiple games. Each
team contributes one game to be usedin the tournament.

b. Exam: aone hour WebAssign (on-line) exam on the elements of the Python language that
were usedinthe course. Questions will be all multiple choice exceptforone code-
composition question.

Grading:

1. Assignments(40%):Thisisanindividual effort but collaborationis encouraged. Individual
progress will be checked at least once perweek duringthe first three weeks.

2. Exam (30%):Individual effort onthe WebAssign exam.

3. Final Project(30%): Graded as a team.



